A F e Tage

! e
TOERNG ey,

VBN A s b e e p D £ 1 o P AU b s 8 R e WL a L e e

C, SWAN BANDS IN COMETS* Nbb 3 7951

RALPH E. STOCKHAUSEN AND DONALD E. OSTERBROCK?{ -

The relative populations of the vibrational levels of the X 11 and A °IT electronic levels are
caleculated assuming the fluorescence mechanism. Pure vibrational transitions are taken into
account by making a rough estimate of the magnetic-dipole transition probabilities. Both the
approximate method, Rosseland’s theory of cycles applied to a three-level molecule, and the
accurate solution of the equations of statistical equilibrium for a 10-level molecule, give similar
results. The excitation temperatures derived from these relative populations agree satisfactorily
with the observations of the Swan bands by McKellar and Climenhaga (1953) for various sun-
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comet distances.
transitions, expected from a2 bright comet,
be difficult to detect.

It is well known that the C, Swan bands ob-
served in comets are excited by the mechanism of
resonance fluorescence (Stawikowski and Swings
1960). Observations give excitation temperatures
(defined by a Boltzmann distribution of the rela-
tive populations of vibrational levels of the X 31
ground electronic term) in the range T,,=2000-
3000° at sun-comet distances of 0.48 to 1.40 a.u.
(McKellar and Climenhaga 1953). Other comet-
ary molecules such as CN, CH, NH and OH are
observed to have much lower excitation tempera-
tures, and this is understood qualitatively to be a
consequence of spontaneous downward radiative
transitions (vibrat.onal and pure rotational) with-
in the ground electronic terms of these molecules
{(Wurm 1936). In fact, quantitative calculations
using estimated transition probabilities approxi-
mately match the observed excitation temperature
(Hunaerts 1953, 1957). However C; has no per-
manent electric dipole moment, and the downward
radiative transitions within the ground term are
therefore forbidden, so that large populations
occur in highly excited vibrational levels (Wurm
1936).

Houziaux (1960) has calculated the expected
populations of successive vibrational levels in C,,
taking account only of resonance fluorescence in

*Published as Goddard Space Flight Center document X-614-64-232,
August 1904.
$Washburn Observatory, Madison, Wisconsin.
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Finally, an estimate is made of the infrared radiation, due to pure vibrational
The expected amount of radiation is small and will

the Swan bands, and assuming all transition prob-
abilities within the ground X 3T term to be iden-
tically zero. However the calculations do not
agree very well with observation in that the cal-
culated excitation temperatures are higher than
the observed excitation temperatures and further-
more vary considerably from cne level to the next.

In fact, however, magnetie dipole transitions of
the type AZ=+1 can occur within the ground
X M term of C,, since all the selection rules for
this type of transition are fulfilled (Van Vleck
1934). We can see the approximate effect of
these transitions by applying Rosseland’s theory
of cycles to a simplified 3 level molecule, taking
the lowest levels 1 and 2 as successive vibrational
levels of X ®II, and the high levei 3 as any vibra-
tional level of the upper A 3l term that is con-
nected by strong radiative transitions with both
levels 1 and 2. Then the popuiation ratio is
(Ambartsumyan 1958).
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where W is the dilution factor, T is the radiation
temperature and T, is the observed temperature
as defined above.
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In a crude first approximation A;; =~ A>Aq
50 if WA3; exp (—hve/kT)>As, that is if the
transition 2—1 is strongly forbidden, then T,,
=~ T =5730°. Alternatively, if A3, exp (—hvy/kT)
A, that is 2—1 can occur, then [W] exp
(= hvo1/kT) ~exp(—hva1/kT,;). For a comet at
1 a.u. distance from the sun the geometrical dilu-
tion factor is W=5X107% (hv/kT)=~0.4, and
this limit gives T,,=~180°. The magnetic dipole
transition probability is (Condon and Shortley
1951)
647's’° 2
where ¢=1618 em~ is the wave number between
successive vibrational levels, and (aMb) is the
matrix element of the magnetic dipole moment,
which we can crudely estimate to be 1 Bohr mag-
neton. We thus roughly estimate As(=A,s)
=10"! sec—!, which is of the same order of m .-
nitude as WAzexp(—hva/kT), but smaller than
Aszexp(—hvs/kT), since for the strongest transi-
tions in the Swan bands A; =5X10%ec—"!. Ac-
cordingly, we expect the calculated excitation
temperature to be between the two limits above
but closer to the first, that is, to be of the order of
a few thousand degrees.

Therefore accurate calculations of the statis-
tical equilibrium of cometary C, were made, tak-
ing into account the lowest 5 vibrational levels of
the ground X *II term and also the lowest 5 vibra-
tional levels of the upper A 3II term.

The relative populations were obtained by
solving the equations of statistical equilibrium.
Equations similar to those of Houziaux (1960)
were used, with the addition of pure vibrational
transitions within the electronic term.. Only
those pure vibrational transitions with Av= +1
were considered. For compieteness, pure vibra-
tional ausorptions of solar infrared radiation were
included, although they had negligible influence
on the results. Following are the equations of
statistical equilibrium, lower electronic term,
i=1, 5:

Avib =

Mgy Biot ¢ pe-1 « —n(By 21 py i+ 44 0
10
+By i1 Pi 11 'f'kzeBuc pu) FNep1

10
(B 1414 wtAg ) +k20nk(Bu pritAr) =0 (3)
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upper electronic term, j =6, 10:
Mgy Bt 5051 5= ny[By j1 05 0+ A4 414
5
+Bj s 05 1t 2; (Byps+A)]+nn

5
By 5Py sHA s )+ zln B;p;=0 (4)

The notation is essentially the same as used by
Houziaux (1960).

The same values of 4,4 were used for all vibra-
tional transitions of both upper and lower elec-
tronic terms. For the pure vibrational absorp-
tions, all upper levels were assumed to absoro at
A=15.70u while the lower absorbed at 6.18u (these
are wavelengths of the =0 to v=1 transitions).
The solar radiation at these wavelengths was ob-
tained from Allen (1963). Values of the other
parameters used in equations (3) and (4) are
listed in Table 1. The columns headed m and n
refer to the subscripts used in equations (3) and
(4). The transition probabilities were computed
from the overlap integrals and the oscillator
strength using the same values of these quan-
tities as Houziaux (1960). The radiation densities
were derived from the “mean monochromatic in-
tensities”” in Table 1 of Minnaert (1953). The
transition probabilities and radiation densities
computed here are slightly different from those of
Houziaux, but either set of values gives essentially
the same results.

The equations of statistical equilibrium were
solved with the aid of an electronic computer.
For comparison, we show in Table 2 the results of
our work for the case with 4 ,4=0 and a sun-comet
distance of 0.72 a.u. (which is probably the dis-
tance used by Houziaux) and Houziaux’s results
for the same case. We believe that there is some
error in the latter. Table 3 shows the results for
various values of 4,4 and the sun-comet distance.
In order to allow for uncertainties in the value of
Ay, calculations were made with the assumed
values 4,4=1.0, 0.1 and 0.01 sec—".

It can be seen that the results of Table 3 have
the same behavior as the three-level case, i.e.,
decreasing vibrational temperature with increas-
ing vibrational transition probability. I is also
seen that transition probabilities between A,qu
=0.1 and 1.0 sec—! give excitation temperatures
in the 2000-3000° range observed by McKellar
and Climenhaga.
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TABLE 1.—Parameters Used in 1e Equations of Statistical Equilibrium
v v m n A oo o o oo ¢ (0.72 a.u.)

sec™! erg=lcm3ec™? erg cm™? sec
0 0 6 1 5165 6. 36- 10° 5. 26- 108 1. 135- 1010
0 1 6 2 5635 1.41- 108 1. 52- 10's 1. 257
0 2 6 3 6191 2.12- 10 3.02- 107 1. 433
1 0 7 1 4737 2. 67- 10° 1.71- 10% 1. 020
1 1 7 2 5129 3.23-10¢ 2. 61- 10 1.129
1 2 7 3 5585 1.93- 10¢ 2. 02- 10 1. 263
1 3 7 4 6122 4. 60- 102 6. 34- 107 1. 425
1 4 7 5 6764 7.75- 104 1. 44- 107 1. 530
2 0 8 1 4382 3.42-10° 1.73- 1077 0.741
2 1 8 2 4715 4.07- 10¢ 2. 56- 108 1. 009
2 2 8 3 5098 1. 47- 108 1.17- 1018 1. 096
2 3 8 4 5540 1. 96- 108 2.02- 10 1.223
2 4 8 5 6060 6. 68- 10° 8.93- 10v 1. 418
3 1 9 2 4371 8. 61- 10% 4. 32- 107 0. 737
3 2 9 3 4697 4. 68- 10¢ 2. 92- 10 1. 001
3 3 9 4 5071 5.24-10° 4.10- 10% 1.119
3 4 9 5 5502 1. 89- 10¢ 1. 89- 10 1. 211
4 2 10 3 4365 1. 40- 108 6. 98- 10Y 0. 734
4 3 10 4 4685 4. 98- 10¢ 3.07- 10" 0. 995

|
TABLE 2.—Relative Populations
THIS PAPER HOUZIAUX (1960)

Lower Electronic Term Upper Electronic Term

Lower Llectronic Term Upper Electronic Term

" N@")/N@"=0) v N@')/N@"=0)

v" N@")/N(@"=0) v N@)Y/N@"=0)

1 0.69 0 9.4.10"
2 0.48 1 6.4
3 0.33 2 4.3
4 0.23 3 2.9
4 2.0

1 0.95 0 1.0- 1077
2 0.71 1 8.7-10"%
3 0.61 2 7.9
4 0.37 3 4.5

4 6.1

From the relative populations given in Table 3
it is also possible to estimate the expected infrared
radiation of cometary C,. We will make this cal-
culation for the (1,0) band of the lower electronic
term, which occurs at 6.18u. Both the earth-
comet and sun-comet distances are taken as 1 a.u.

According to Wurm (1963), the number of C.
molecules in the ground state of a typical bright
comet is

N(C) =6X10% molecules

The lununosity in the (i,O) band is then given by
the expression

N@'=1)
N@"=0)

where N(v"=1)/N(v"=0) is a relative population
given in Table 3. With the assumption A,p=
0.1 sec™! we obtain L =9 X108 ergs/sec, or a flux
received at the earth, assuming the whole comet
is in the field of the telescope, of about 3X10-?
ergs/cm” sec.

L=~ ‘N(C)Awp hvop
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TaBLE 3.—Relative Populations and Bolizmann Temperatures

Upper Level

~

N(@")/N@' =0)

Lower Level
1
v N@")/N@" =0)
R=0.4a.u. Awr=1.0

1 0.39 25X1»¢
2 0.22 31
3 0.12 33
4 0.06 32

Anp=0.1
1 0. 65 53 X10*
2 0.44 56
3 0.29 56
4 0. 20 56

A =0.01
1 0. 69 63 X102
2 0. 18 62
3 0.33 61
4 0.23 62

R=07au A, =10
1 0.20 14 X102
2 0.09 19
3 0. 04 21
4 0.01 21
A'\'b =0.1

1 0.56 | 40%x10?
2 0.36 46
3 0.24 48
4 0.14 46

Aui»=0.01
1 0. 68 60 X 10?
2 0.47 61
3 0. 32 60
4 0. 22 60

R=1.0a.u. Am-:,-l.,()

1 0.11 11 X102
2 0.04 15
3 0.01 16
4 0. 004 17

Aup=0.1
1 0.47 31x102
2 0.28 37
3 0.17 39
4 0.09 38
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TaBLE 3.—Relative Populations and Boltzmann Temperatures (Continued)
Lower Level Upper Level
Tl‘
v* N@")/N@"'=0) v N@')/N(@' =0)
Ais=0.01
1 0. 66 57 X107 1 0. 66
2 0.45 58 2 0.43
3 0.30 58 3 0.29
4 0.21 58 4 0.20
R=14a.u. A,i3=10
1 0.06 8X10° 1 0.31
2 0.02 12 2 0.05
3 0. 006 14 3 0.01
4 0. 002 14 4 0. 006
Au=0.1
1 0.35 22X 10 1 0.48
2 0.19 28 2 0. 22
3 0.11 31 3 0.12
4 0.05 30 4 0.08
Auiy=0.01

1 0.63 51X10* 1 0.65
2 0.43 55 2 0.41
3 0.29 55 3 0.28
4 0.20 57 4 0.19

Rough calculations can b2 made as to the possi-
bility of detecting this band. Assuming that the
minimum power (i.e. Noise Equivalent Power)
detectable by an infrared detector is about 10—1
watts; and that 0.1 of the power incident on the
telescope reaches the detector, then it would
require a telescope diameter of several hundred
inches to observe this band (even above the at-
mosphere). Clearly, detection of the infrared
lines of C; are not to be expected.

In summary, then, with the estimated pure
vibrational transition probabilities and the as-
sumption of the fluorescence mechanism, we have
been able to derive relative populations of a 10-
level C; molecule. These results are in agree-
ment with those suggested by a simplified 3-
level molecule and with published observations
of comets.

It has also been possible to predict the infrared
emission expected from a bright comet. This

emission seems tco weak to be observed. Similar
calculations need to be performed on other comet-
ary molecules to predict their infrared spectra.
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EVOLUTION OF O STARS. II. HYDROGEN EXHAUSTION
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»AND GRAVITATIONAL CONTRACTION®

RICHARD STOTHERS

/ The evolution of a star of 30 Mo is considered {:om the end of the stable phase of hydrogen

burning to the onset of helium burning.

Ten models are constructed for the hydrogen-exhaus-
tion (E) phase, and six models for the gravitational contraction (G) phase.

The time scsle of the E-phase is so short (8.8 X10* years) that the shell source remains

peaked at ¢=0.34 and undergoes little hydrogen depletion.

Because radiation pressure remains

strong in the core, convection does not vanish when the hydrogen coutent at the center falls to
zero. Gravitaticnal contraction of the core contributes more to the luminosity than shell burn-
ing, but since the total luminosity changes little, the structure of the envelope is hardly affected.
On the H-R diagram, the evolutionary track turns back toward the main sequence when X.=0.03,
and does not tur1 away again until the shell source becomes important.

The G-phase begins when Ly, core/L <0.001, and lasts 9X10° years. Although the tem-
p¢ ature in the shell increases, hydrogen depletion remains negligible because of the short time
scale. However, the shell narrows considerably and its peak moves slightly inward for a while.
The steep temperature gradient outside the shell ¢ 'ses the semiconvective z: e to move inward
to ¢=0.48; the hydrogen discontinuity attains a valu AX=0.1. As the luminosity and radia-
tion pressure in the shell simultaneously increase, the envelope expands. The shell then behaves
like a node, since the core continues to contract. The convective region near the center shrinks
asymptotically to a value ¢ =0.06, but at no time does the core approach an isothermal condition.

The gravitational energy release is nearly uniform throughout the core in all phases.
onset of helium burning, T.=1.5%X10% °K and p.=270 gm/cm?.

At the
Because of the brightening

shell source, the stellar radius increases rapidly, bringing the evclutionary track to completion
of the typical S-shaped curve on the H-R diagram.
When helium starts to burn, the spectral type is B3, and the star is expected never to return

to the region of O stars during its active life.

I. INTRODUCTION

In massive stars when the central hydrogen con-
tent falls to a value of 0.03, the whole structure
undergoes a drastic reorganization. Kushwaha
(1957) first considered the subsequent early phase
of hydrogen burning in a shell outside the convec-
tive core for a star of 10 Mo. Reiz (1963) has
reconsidered and extended this work, but Hayashi
and Cameron (1962) and Hayashi, Hoshi, and
Sugimoto (1962) have pursued the study of a star
of 15.6Me into the entire hydrogen-exhaustion
phase and then into the gravitational contraction
phase preceding helium burning. These phases

*Published in The Astrophysical Journal, 140.2): 510-523, August
15, 1964. This paver and *Evolution of 0 Stars. I Hydrogen Burn-
ing” were based on the author's doctoral dissertation, Harvard
University, 1963.
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have also been considered for stars of intermediate
mass, as follows: 3.89Mo (Hoyle 1960), 4Mo
(Hayashi, Nishida, and Sugimoto 1962; Hayashi,
Hoshi, and Sugimoto 1962), 5M¢ (Polak 1962),
and 7Moo (Hofmeister, Kippenhahn, and Weigert
1963). It is the purpose of the present paper to
follow the evolution of a star of 30Ms during
these phases to the onset of helium burning at the
center. The previous hydrogen-burning stage
has been computed in Paper I (Stothers 1963).

il. ASSUMPTION AND DEFINIT.ONS

a) Assumptions

The same general assumptions as in Paper I are
made, except that nuclear-energy generation also
occurs in a radiative shell around the core and the

. Sk A M SR aa!

e
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time rate of change of the physical variables
must be taken into account during these fast
evolutionary phases.

The opacity of stellar material is agaia assumed
to be due only to electron scattering, and the
equation of state is represented by the sum of the
perfect gas pressure and radiation pressure.

b) Notation

In general, we apply the same notations for
stellar zones as in Paper I, except here we divide
the radiative intermediate zone into outer (Zone
IIIa) and inner (Zone IIIb) subzones, separated
by the radiative, hydrogen-burning shell (denoted
by a subscript s).

To designate the successive evolutionary phases
we introduce A (hydrogen burning), E (hydrogen
exhaustion), and G (gravitational contraction)
followed by a number indicating the particular
model in the phase.

¢) Chemical Composition

The cuter radiative envelope retains the initial
age-zero composition asrumed in Paper I:

X,=0.70, Y,=0.27, £,=0.03, Xcno=Z,/2. (1)

The semiconvective zone constantly adjusts its
composition to maintain convective neutrality.
A discontinuity in X marks its incerface with the
inner radiative zone, which retains a constant
gradient in X, left behind by the retreating, ho-
mogeneous convective core. The distribution of
X for the last model of the hydrogen-burning
phase is given by Figures 3 and 4 of Paper I. In
the core of that model X,=0.07.

The change of hydrogen content. as an explicit
function of time, 7, and mass fraction, g, is given
by

X € . 4. .

—_— ——— (“

. B adiative region) (2)
and

ox 1 &

=" oFn ;f endq (convective core), 3)

where ey is the energy generation due to hydrogen
burning and Ex=6.0X10' erg/gm is the energy
released per CNO cycle.

d) ivuclear Energy

The accurate expression for the rate of energy
release due to the conversion of hydrogen into
helium via the full CNO cycle has been given by
Reeves (1962) in terms of the N4 H! rate:

X
€u=7.94)(1027f14 10141 (\' -

<*CNO

)X exoXoT
exp (—152.3T5"") erg/gm sec  (4)

where
fuua=141.75 p'2T 23, 5)

Juu1= 1+00027 Tﬂl/.’{
—0.0037 T4~ 0.00007T,, (6)

X14/Xexno=0.99—0.00067 T. (7)

Here fi4,1 is the weak electron-screening factor,
gu,1 is the correction term to the zero-energy S
factor, and X1¢/Xcno bhas been estimated from
tables given by Reeves (1962) for temperatures in
excess of 2.5X107°K. We are assuming every-
where the full equilibrium abundance of oxygen,
which, strictly speaking, is not attained in the
cooler shell source because of the short time scale
involved.

e) Gravitational Energy

The amount of energy involved during a gravi-
tational contraction or expansion is expressed as
the difference between the work done by the pres-
sure and the change in thermal energy of the gas
and radiation:

w_pd_du_3kT| 9, m —us—sus
“= a8 87_2yH[611n(Ty e ")
5+8y a ]
3 arlnl‘r (8)
where
1 w3k o o0 1-8
s v—2anT o, y= 8 (9)

and the time derivative applies to a given mass
fraction. As Hayashi and Cameron (1962) have
noted, the logarithmic arguments in equation (8)
are independent of position in convective regions
of the star.
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lil. BASIC EQUATIONS

The basic equilibrium equations are given in
Paper I. For Zones I-Illa the equations were
transformed and integrated, and the zones fitted
to each other in the same way as before. Hence-
forth we shall call this region simply the envelope.
It is specified only by the luminosity L (through
the parameter C) since, down to the chosen ter-
mination point ¢,=0.500, the composition in the
radiative region has been fixed by the previous
models.

In the cor~ (Zones 1IIb and IV) we employ q as
the independent variable and logarithms of r,L(r),
P, and T as dependent variables. The core solu-
tions are specified by 8. and T, and are integrated
from the center out through the shell to ¢,, beyond
which any energy sources are negligible. The
customary series expansions near the center
(Schwarzschild (1958), p. 114) have been modified
to include radiation pressure and applied at
g=0002. The step value was taken to be
Ag=0.001.

Fitting of the envelobe and core is made at ¢,
in U, V,and {r)=L. Since L was expected to
change little during the present evolutionary
phases, it was sufficient to integrate a short series
of envelopes at equally spaced intervals of L and
then to interpolate values of U, and V, at finer
intervals of L.

The change in X(g) as a function of time has
been given by equations (2) and (3). These may
be approximated by difference equations, with the
known run of (en/X) as a function of ¢ from the
previous model. Letting ¢ refer to quantities of
the previous model, we write in an obvious
notation

AlnX 1 [(eH y (eﬂ)]__ -
A - 2EaL\X/T\x/|= =@

@>q") (10)
AlnX_ 1 _/”(gi)‘
Ar - (qa'}'q‘g)EH I_ X

0

+<%?)]dq=—5c(%), (29>0) (11)

Aln X
Ar

=5,(9) +[Ec(q0) —E:(q4)] q“:},“
Qe — Qu

(=929 (12)

for qi+'—qq small. These approximations are
slightly more accurate than those used by Hasel-
grove and Hoyle (1956) and by Hayashi and
Cameron (1962). Outside the convective core,
in which X, is known (constant), an iterative pro-
cedure must be used to calculate X from equation
(10) or equation (12), since (en/X) depends im-
plicitly on X through p. Using X from the pre-
vious model, we calculate a preliminary value of p
and hence (ex/X). Insertion of (en/X) into
equations (10) or (12) yields a projected value of
X. Repetition of this procedure yields a definitive
value of X correct to the second order.

The method of producing an evolutionary step
was varied according to the magnitude of the
ratio of luminosity supplied by gravitational
contraction to total luminosity, as follows.

o) L,/1.<0.1

The method of Hayashi and Cameron (1962)
was adopted for this case only, although they seem
1o have used it up to L,/L=0.6. Here the part of
the gravitational energy release inclosed in hrack-
ets in equation (8) is expressed as a quadratic
function of ¢, with coefficients extrapolated from
the previous models:

= @t ag-+a?). (13)
The basic equations, where now e=ex-4-¢, are
integrated from the center with input values of
X, B, T., ao, a1, as, q¢*, and the run of X* and
(en/X)* as a function of g. At qq, A7 is deter-
mined by equation (11). When a self-cunsistent
model i3 obtained, the quantity in brackets in
equation (8) is computed exactly and improved
values of a,, a), and @, are obtained by least
squares. Another model is integrated with the
nev’ values, but this second model is always
sufhciently accurate for L;/L <0.1.

b) 0.1<L,/L<0.5

In this case we specify X, and estimate Ar by
extrapolation from the previous modei.. Hence
¢, can be computed exactly from equation (8) with
the given Ar. In the course of integrations to find
the correct 3, and T, it is possiblc continu 'y to
improve Ar by use of equation (11).

e) L,/L>0.5



TP ST L AR RS 6 T s W WE B B amin T o) w e amA e saeies s e er e o

ASTRONOMY AND ASTROPHYSICS 177

As L,/L increases, L becomes more sensitive to
¢; oand hence to Ar. To cope with the increasing
difficulty of making Ar converge, we choose a
parameter hat loses importance with increasing
L,/L, namely, X.. In this case, we take the time
step by specifying Ar explicitly. With a value of
X. extrapolated from the previous models, it is
possible to obtain a definitive value for X, in the
same way as for Ar in Section IITh., Eventually,
when hydrogen burning ceases entirely in the
shrinking convective core, we need only specify Ar,

IV. HYDROGEN-EXHAUSTION PHASE

The results of the computations for this phase
are presented in Table 1. It is curious that the
stellar radius starts to decrease, causing the star
to turn back toward the main sequence in the
H-R diagram, as soon as X.~0.03 for s Lroad
range of stellar masses (10<M/Mo<60), even

X, becomes small. To maintain the luminosity,
the central temperature must correspondingly
increase; but since p. changes little, R~7 ! from
equation (10) of Paper I.

For a while hydrogen burning in the core is able,
alone, to maintain the energy balauce (Schwarzs-
child and Hiarm 1958). However, eventually an
accelerated contraction of the core is necessary to
supplement the deficient Ly,core With a growing
L,. When the temperature becomes high enough,
hydrogen burning in a shell outside the core also
becomes important. It is interesting to note that
in the above range of masses the peak of this shell
source always coincides with the mass fraction of
the convective core when X ,=0.07, i.e., just before
the radius starts to decrease. Table 2 shows that
g, the peak of the shell source, is roughly half of
go, the maes fraction of the core of the initinl main-
sequence model. Furthermore, g, itself increases
by about 0.15 every time the stellar mass is dou-

though the mass fractions contained in the con-
vective core are very different (see Table 2). It
is clear, however, why the radius will shrink when

bled; this is a consequence of the increasing impor-
tance of radiation pressure (diminishing 8), which
extends the convective regions outward.

TasLE 1.—Evolutionary Models of a Star of 30 Mo during Hydrogen-Ezhaustion (E) Phase

Models
1 2 3 4 5 6 7 8 9 10
log € —3.272 |—3.266 [—3.264 |—3.262 |—3.260 [—3.256 | —3.252 |~3.248 |—3. 244 | —3.230
Qo +0.717 140. 719 |+40. 720 [+0. 721 |4+0. 721 |4+0.722 |40.723 |+0.725 [40.728 | +0. 731
Q2™ Q3 e +0. 550 |+0. 547 |+0. 546 |+0. 545 |+0. 545 |{40. 543 [4+0. 541 |+0. 539 [4-0. 537 | +0. 534
D, € +0. 650 14-0.647 |+0. 645 [40. 644 |40. 643 [+0. 640 |4+0.637 |+0. 634 {+0. 630 | +0. 627
D, T +0. 589 |4-0. 584 |40, 581 |[+40.579 |{+0.578 [+0. 573 | +0. 568 |40. 564 [4+0. 559 | -+0. 554
T +0. 342 [40.342 |+0. 342 |+0. 342 [+0.342 |40. 342 |+0. 342 |40. 342 |40, 242 | +0. 342
- O +0.614 |+0. 608 |+0,605 |+0. 605 [+0.604 {40. 604 |[+0. 602 |+0.600 |+0.597 | +0. 595
log Toeemecceeaaeas +7.436 {+7.458 |4+7.487 |4+7.515 |4+7.542 |+7.561 |+7.571 |4+7.578 | +7.584 | +7.589
log (rs/ROY-ec o . +0. 267 [40. 240 |+0. 211 |+40. 181 {40. 153 |40. 130 |+0. 117 {+0. 107 [4-0. 097 | 40. 089
N +0.328 |+0.320 |+0.316 |+0.311 {+0.302 |+0. 282 |+0. 258 |+0. 236 |+0. 205 | +0. 182
log Xeeowoooaeoceinn —1.523 |—2.023 | —-2.523 {—3.023 |—3.523 |—4.023 |—-4.523 |—5.015 |—5.882 | —7.311
. P +0. 564 [40. 557 |-+0. 554 |+40. 555 [40. 555 |+0. 559 |40, 563 |40, 567 |+0.572 | +0. 577
) T3 P +7.665 |4+7.696 |+7.726 |47.756 |+7.785 [4+7.308 |+7.823 [+7.833 |+7.844 | +7. 854
108 pooccecccmcaacnanan +0. 701 |40, 795 |+0. 886 |[+0.97% |+1.066 [41.140 [4+1.193 |+1.229 {41.272 | +1.312
Ly, core/Loeeeeee . +0. 999 |+0.995 |+0.985 |40. 943 |40. 853 {40. 599 |+0. 319 |+0. 145 | +0.028 | 40,002
Lo/ Lcceeeeeo e +0.001 (+0.004 '+0.014 [+0.044 [4+0.004 |40, 141 |40 175 [+9.217 | 40. 249
Ly/Leeecaee-. +0. 001 |+0.004 [+0.011 |+0.043 |+0. 103 {+0. 3C7 |+0. 540 {40,680 |+0. 755 | +0. 749
log (L/LO)eeeen--..... +5. 439 |+5. 445 |+5.447 14-5. 449 |+5. 451 [+5. 455 |+5. 459 |45, 463 |+5. 468 | +05. 472
- log (R/R@Y..ccc.... _[+1.143 {4+1.136 [+1.113 [+1.090 [+1.066 [+1.057 [+1.057 |+1.062 |+1.070 | +1.079
; log Teevocunn.-. ---|+4. 548 |+4. 554 {+4.565 [+4.578 |+4. 590 |+4. 505 | +4. 590 |+4. 595 |+4. 502 | +4.580
’ v (10t years)..... ... 0.00 |+591 [4+7.74 |+8.33 |[+48.53 [+£.60 [+8.61 !|4+8.67 |+8. 69 +8.72
¢ l
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It is for this reason, the very distance of the
hydrogen-rich regions, that the temperature at
X =0.07 is low and shell burning is consequently
delayed. (In massive stars, 8 is low not so much
by virtue of high temperature as of low density.)
In stars of lower mass the point at which X ,=0.07
lies closer to the center, and shell burning begins
tn contribute significantly to the luminosity before
the core contraction does. The critical mass for
this to happen is about 20Me. If g, is small
enough that the core mass lies below the Schén-
berg-Chandrasekhar limit (g ~=0.1), thus becoming
isothermal or even degenerate, then L, may al-
ways be small. The approach to isothermality
may be seen in a plot of log T against ¢ for 5Me
(Polak 1962, Fig. 3), where ¢q,=0.11. It may be
inferred for 15.6Mo (Hayashi and Cameron
1962), where ¢,=0.17, since Ly, wenn>L, until
X.<0.001. In stars with mass~1Mo
(Schwarzschild and Selberg 1962), the shell
source supplies practically all the luminosity out-
side a very large degenerate core. The critical
stellar mass for the occurrence of degeneracy n
the core prior to helium burning is~4Mo
(Hayashi, Nishida, and Sugimoto 1962).

At 30Mo,0,>>0.1 and the core never even
approaches an isothermal condition. Thus gravi-
tational contraction proceeds unchecked to in-
crease T, in sccordance with the virial theorem.
The subsequernt increase in ey reduces X, to less
than 1 percent. Thereafter the drop in X, out-
rurs the increase in T.”, and ey decreases, .eing
supplanted by ¢~dT./dr. However, hydrogen
burning in the core still supplies over half the
total luminosity even when X, is as low as 10™.

The distribution of hydrogen in the centiul
regions may be seen in Figure 1. It is clear that,

20 L T Li ¥
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30 32 34 38 38 A0

Ficure 1.—Depletion of hydrogen as a function of mass
fraction during the hydrogen-exhaustion (X)) and gravi-
tationai-contraction (G) phases. Filled circles represent
the boundary of the conective core in the E models.

because of the high central temperature and the
luminosity requiremunts, X, begins to decrease
more and more rapidly with ¢, This has the
effect of necessitating an even sharper increase of
temperature, which consequently exhausts the
central hydrogen and ignites a region which is still
relatively hydrogen-rich but close enough to the
center to feel the temperature rise. Thus Figure
1 shows why a shell source develops near ¢=0.34
for 30Mo. We expect this shell to be initially
broader in massive stars than in stars of lower
mass becausc the mean gradient of hydrogen
throughcut this region is gentler (larger go—g,; see

TaBLE 2.—Location of Criticai Interfaces in Stars of “ntermediate and High Mass

When X, =003

M/Mn 4o e 9

X, Referonce

| S 0.21] 0.11| 0.10

10........ L N I .07
15.6.____. .42 A7 .16
30...._... L0 0,34 .33
62.7...... 0.75 |.._.... 0. 44

0. 74 | Polak (1962)
.90 | Kushwaha (1057)
.90 | Sakashita, Ono, Hayashi (1959)
. 70 | Stothers {1963)

0.75 | Schwarzzchnd und Hiirm (1 58)




b.
4

e,

W — rar a2 o vae

e et § A BT AAIIAE A e - b e C3

At SRy % ek S sty v o e« e

ASTRONOMY AND ASTROPHYSICS 179

Table 2). The subsequent growth of the shell
source is shown in Figure 2.

In Figure 3 the relative contributions to the
energy generation may be compered. The mag-
nitude of ¢, is very nearly constant throughout tiic
core for all stages.

log €, (in args/am-sec)

Figure 2.—Logarittm of the energy generation due to
hydrogen burring as a function of mass fraction.
Curves are labeled with the mnodel numbers.

[ T T T

e g =

o

109 ¢ (n ergs/gm-sec)
~

Fieure 3.—Logarithm of the energy generation as a frine-
tion of mass fraction. Solid curves refer tu the contri-
butions froin both hydrogen burming and gravitational
contraction. The dashed curve refers only to gravita-
tional contiaction. Curves are labeled with the model
numbers,

Shrinkage of the convective core is at first slow
because 8, remains almost constant. Hence the
evclution of the center #pproximates Lane’s law,
ye~TS3. Wheu the shell source becomes impor-
tant for X, <1074,p, increases at a siigatly greater
rate than T3, the only concession to isotliermality
that the core makes. At this point (Model E7),
L,/L=0.5aud Ly, swen/L~0.1. It seems that as
soon a8 L,/L grows much larger, contraction of
the core begins to be offset by an expansion of the

envelope (cf. Hayashi and Cameron 1962). This
expansion is due to an increase 0! Ly, she1r, com-
pensating for the reduction of Ly, core. xuctly
why the envelope expands as Ly, ¢nen increases will
be made evident in the next section. The result
on the I — R diagram is t=at the star tak~s another
turn away from the main sequence.

When the hydrogei. contet at the ceuter of the
star vanishes after Mode: E10, the convective core
does not disappear. This contrasts with the
results on stars of lower mass (Hoyle 1960; Polak
1962; Hayashi and Cameron 1962), wit..ce appar-
ently it is just the nuclear-energy generation that
maintains the steep temperature gradient. How-
ever, in the case of 30My,8 is still so low that
convection persists near the center.

Tne time scale of this phase is short cnough
(8.8 X10* years) that the shell source, whick re-
mains peaked at ¢,=0.342, undergoes very little
hydrogen depletion. Because of the struggle of
the varicus energy sources to maintain the lumi-
nosity, L increases but slightly. "i'hus the strac-
ture of the envelope remains nearly constant.

V. GRAVITATIONAL CONTR «<C1'ON PH~SE

This phase is taken to st... when Ly, core/L
<0.001. The hydrogen content of the convective
core is negligible, and the sole nu-lear-cnergv
source is the hydrogen-burning shell. In i odel
E9 the rise of the shell sovrce uad terminated the
upward growth of L,/L, which, reached a muxi-
mum value of 0.:5. This fraction becomes all the
more impressive when we compare it with 0.56 for
a siar of 15.0Mo (Hayashi and Cameron 1962).
Table 3 shows that even at the onset of helium
burning (Model GG6) the contributicn of graviia-
tional contraction to the luminosity is still a siz-
able fraction. This suggests that for stars more
massive than 30Me hydrogen burt..ng in a shell
may not become¢ dominant.

During the shell-burning phase-, the computa-
tional difficulty of fitting models increases. The
reason li»s in the shift of the U/ —V curve to the
left, as seen in Figure 4. This is aused by the
developing chemical inhomogeneity, which began
after the initial main-sequence state, and by the
shell 3ource, which produces the «ftward loo}: cn
the U~V plane. Becausc of the short time cale,
the amouunt of hydrogen depletion is very snzll
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TasLE 3.—Evolutionary Models of a Star of 30 Mo during Gravilational Contraction (G) Phase

Models
1 2 3 4 5 6

log Cooeee —3.231 —3.216 —3.195 —3.178 —3.165 —3.152
L +40.733 +0. 739 +0. 749 +0. 756 +0. 762 +0. 769
Q=G . +0. 530 +0. 522 +0. 508 +0. 498 +0. 489 +0. 481
At s +0. 620 +0. 606 4-0. 582 +0. 560 +0. 541 +0. 522
D, (Y +40. 542 +0.523 +0. 490 +0. 467 +0.445 +0. 425
Doommeece imemeem +40. 342 +0. 342 +0. 338 +4-0.328 +0.328 +40.328
. N +0. 589 +40. 576 +0. 556 +0. 553 +0. 553 +0. 515
log Teeoooeeee - +7. 596 +7. 607 +7.626 +47. 654 +7.668 +7.683
log (r./RO)-- - +0.073 +0.048 +4-0. 001 —0. 058 —0.100 —0.142
T, +0. 155 +0.123 +0.093 +0.078 +0. 069 +0.064
. S, +0. 357 +0. 604 +40. 631 +0. 651 +0. 665 +40.674
log Teeoooooee-. +7.873 +7.907 +7.971 +8.035 +8.101 +8.168
108 Pee o ceeeee +1.386 +1.520 +1. 760 +1.992 +2.217 4+2.433
Ly wet/Lo_. .. +40. 307 +0. 391 +0. 485 +0. 536 +40. 561 +0.575
g/l ... +0. 693 +0. 609 +0. 515 +40. 464 +0. 439 +40. 425
log (L/LG)...-.-- 4 5. 480 +5.495 +5.516 +5.533 +5. 546 +5. 560
log (R/Ko)- - -_ .. +1.098 +1. 144 +1. 239 +1. 353 +1. 492 +1.680
log Toeeeoaeee +4. 581 +4. 562 +4. 520 +4. 467 +4. 401 +4.310
r (104 years)_____ 0.00 +40. 10 +0.30 +0. 50 40.70 +0.90

and the shell source remains peaked at roughly
the same mass fraction. Since the shell provides
the driving mechanism for the expanding envelope
while the core is contracting, r at the outer bound-
ary of the shell remains roughly constant. Thus

(.13
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Figure 4.—Evolution of a star of 30 Mo in the U-V
plane during the hydrogen-exhaustion (E) and gravita-
tional-contraction (G) phases. Curves are labeled with
the model numbers, Dots and jumps represent fitting
points. The dashed lines in the solutions represent the
assumed radiative zone (see Paper I).

it is here that the change of log r with ¢ is greatest
(see Fig. 5), that is, U is a minimum, isolating the
energy-producing regions from the envelope. Un-
less small increments in q are taken in the numeri-
cal integrations through the shell, the solutions
diverge. Since the region behaves like an outer
boundary (U,—0), V tends to blow up for small
changes of the input parameters, 8.and T'..

1] T T T T

-
=

F1GuRre 5.—Logarithm of the radius as a function of mass
fraction. Curves are labeled with the model numbers,
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Hayashi, Hoshi, and Sugimoto (1962) have in-
terprete¢ the envelope expansion in terms of the
U-—V plane. For values ot the polytropic index
3<M>1,where P=Kp'*'/¥ and K and N are con-
stants, the centrally condensed solutions of a
polytropic envelope form a leftward loop on the
U—V plane and converge to a noint U=0 and
V=N+1asr—0. For an electiun-scattering en-
velope, N is 3 near the surface, decreases inside,
and then approaches 3 again asr—0. Hence such
an envelope approximates the polytropic case
N =3, where V—1 as U—0 (see Fig. 4). Interior
to q,, L(r)<<Ly, snen S0 Jhat the radiative index
becomes large, since (n+41)raa~(1—8)/cL(r).
Hence the core approximates roughly the iso-
thermal case N = «, which loops outward in the
U -V plane much as in Figure 4.

It remains to see how the shell source actually
expands the envelope. We have already noted
that, in order to tap additional nuclear fuel, the
temperature in the core rises and starts shell burn-
ing. Consequent to hydrogen exhaustion in the
core, the temperature in the shell must continue to
rise 80 that Ly, shenn can assume more of the total
luminosity vurden. As Ly, shenr increases during
the evolution, (n+1),.s decreases, steepening the
temperature gradient beyond ¢, (see ¥ig. 6). But
actually n+1 can only decrease until the adiabatic
value is reached. Therefore, to compensate for
the increasing luminosity, g8 decreases (see Fig. 7).
This relative increase in radiation pressure expands
the envelope.

To make this point more definite, we look at the
structure of the envelope, which may be con-
sidered a polytrope of some characteristic index.

8.2 T —T" T L

80

78

"

log T

L)

T2

70 1 It 1 —

] | 2 3 L] R

FicURE 6.—Logarithm of the temperature as a function
of mass fraction. Curves are labeled with the model
numbers.
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Ficure 7.—Ratio of gas pressure to total pressure as a
function of mass fraction. Curves are labeled with the
model numbers.

The effective termination point of the envelope
must be taken just outside the shell peak, where
U is a minimum on the U~V plane. Now it may
be shown generally for a polytrope of any index
and constant 8=g, that R~(T./B8.0.)"%. Elir-
inating p, we have R~(1—8.)"?/8.T.. Thus the
expansion may be considered as fundamentally
due to the relative increase in radiation pressure,
as stated above. Further, the same result can be
obtained by examining equation (8). A decrease
in B causes expansion by making ¢, negative, and
an increase causes contraction by making e, posi-
tive. The consequences may be seen by compar-
ing Figures 5-7. During phases of roughly
constant 8, the change of T will determine the
change in R.

If we take the stellar core to be a polytrope, then
we may similarly explain the changes of shell
radius, r, (see Tables 1 and 3). By extension, a
star with m shell sources may be subdivided into
m+1 zones whose structure is assumed to be
polytropic. Then, approximately, the changes
of 8 and T at a given shell should determine the
changes of 7 at the next outer shell, unless the
mass fraction of the shell changes by a drastic
amount. Qualitative agreement is found between
this picture of evolution and the accurate pub-
lished results on the evolution of stars of 4Mo
and 15.6Me from the initial main sequence
through carbon burning (Hayashi, Nishida, and
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Sugimoto 1962; Hayashi and Cameron 1962;
Hayasshi, Hoshi, and Sugimoto 1962).

In this regard we note that the last model be-
fore helium burning in a star of 1.3Me considered
by Schwarzschild and Selberg (1962) had 8,=0.87.
Since they neglected radiation pressure and used
B=1 throughout, it might be expected that the
radii they derive are too small. Indeed the track
of their theoretical models on the H—R diagram
deviates leftward of the observed red-giant branch
in globular clusters. One reason may be the neg-
lect of varying 8 in their models; apart from other
factors, for a closer agreement with observations
B should be explicitly included.

Since the envelope evolves independently of the
core (each with a fixed mass), the expansion of the
envelope must lower the local density. Since g8
is also decreasing in the envelope, the temperature
near ¢, actually does not change very much /~ee
Fig. 6). Beyond the shell, however, it
considerably, because the temperature grad:iat
is approaching the adiabatic value. This increase
of the temperature gradient has two major effects:
(1) The semiconvective zone moves steadily in-
ward; by Model G6 it has reached ¢=0.48. The
hydrogen discontinuity grows to X,;—X;=0.10,
although us/u3;=0.91 because the actual hyurogen
content is lower at small ¢. (2). The shell source
becomes narrower, on account of the decreasing
temperature outside (and the decreasing hydro-
‘gen content inside). A curious result, not occur-
ring in stars of lower mass, is that g, moves slightly
inward at first because of the rising temperature
inside and'the rather broad shell distribution of
hydrogen, but thereafter remains stationary as it
encounters less and less hydrogen. The total
amount of hydrogen depletion (in the shell) is
0.0004, and the maximum local change in X is
0.011 at ¢=0.329.

In the core, although 8. steadily rises, the cen-
tral conveetion persists and recedes only to a
roughly constant ¢,=0.06 at the onset of helium
burning. Hence convection probably never dis-
appears ‘completely from the center of very
massive stars,

Model G6 corresponds to the onset of helium
burning. At this point, Ly./L=0.004 and T, is
150 million degrees. This value of T, is almost
the same as the corresponding value for a star
of 15.6Mo because -of the steep temperature

dependence of the energy-generation formula.
However, p, is only 270 gm/cm?, lower by a factor
of 10 than in the star of 15.6Me. But in the
heavier star the core mass is four times as large.

The gravitational contraction phase is very
short (9X10® years), although l!arge changes in
the stellar radius take place.

Vi. FINAL REMARKS

Although the computed values of the fractional
tuminosities should not be considered exact (since
we have neglected in the computations to take ac-
count of the radiative flux that is absorbed in the
expansion of the envelope), nevertheless Figure 8
shows up a brief peak in the luminosity due to
gravitational contraction, whereas the nuclear-
energy sources are spread over longer time inter-
vals. Since the total energy available to the star
as a result of gravitational contraction is small
compared with the nuclear-energy store, it is
expected that the time scale of contraction
phases will be very short. Indeed, the post—
main-sequence age at the onset of helium burning
is 4.9 million years, of which 4.8 million are 'spent
burning almost half of the initial hydrogen
content. '

During this time the interior structure of the
star undergoes drastic changes, especially in the
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F1aure 8. —The fraction of the total luminosity contributed
by hydrogen burning in the core (solid curve), gravita-
tional contraction in the core (dashed curve), and
hydrogen burning in the shell (dash-dot-curve) is
plotted against the time elapsed since the last model of
the hydrogen-burning phase (Model H4 of Paper I).
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short (0.1 X 10f years) contraction phase, as shown
in Figure 9. One complication not oceurring in
stars of lower mass may arise from the existence
of the semiconvective zone. That is, the inward-
moving semicenvection brings hydrogen-enriched
material toward the shell source, which is simul-
taneously moving outward. A hydrogen dare-up
might be expected to occur. However, the results
of Table 3 show that AX is only about 0.1 at the
radiative-semiconvective interface. = Moreover,
from the results on a star of 15.6Me (Hayashi
and Cameron 1962; Hayashi, Hoshi, and Sugimoto
1962), the total luminosity is expected to increase
littie during helinm burning, so that the structu.e
of the envelope (and hence of the semiconvective
zone) will change very slowly; the outward mo-
tion of ¢, is also rather slow. Thus the star coula
probably accommodate quietly the sharp increase
in X, despite the narrowness of the shell source.
However; it seems unlikely that the inner edge of
the semiconvective zone will ever penetrate the
shell before the whole envelope becomes convec-
t.ve during the rightward swing of the evolu-
tionary track in the H—R diagram toward red’
carbon-burning models. We need only worry
about possible hydrogen flaring in stars of mass
greater than 30Mo.

The evolution on the theoretical H—R disgram
1s shown in Figure 10 for the phases considered in
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Fioure 9.—Evolution of the structural zones from the
initial main sequence to the onset of helium burning.
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FicUure 10.—Evolution of a star of 30 Mo on a plot of
luminosity versus effective temperature, during the
phases of hydrogen exhaustion and gravitational con-
traction. Numbers attached to the models /filled
circles) represent the age in units of 10¢ years.

this paper. The ages are giver in units of 10
years. At 7=9.07 the spectral class becomes
BO, and at r=9.67 it is B3. The star is expected
never to return to the region of O stars during its
active life.
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/DO)Q\ 7 THE RV TAURI POPULATION"

RICHARD STOTHERS

Ou: understanding of the RV Tauri stars has
come mainly from photometric and spectrographic
studies based on several tabulations of these stars
since 1921.1® Although members of this group
are too distant fir accurate parallax dertermina-
tion, their absolute magnitudes are known through
the discovery and identification of some in globu-
lar clusters.’-1® It is the purpose of this paper to
analyze the spatial distribution of the RV Tauri
stars in the field and to compare properties of
these stars with properties of similar stars found
in globular clusters.

The data are taken mainly from the General
Catalogue of Variable Stars® (GCVS), which lists
92 stars of this class based on criteria that are
essentially those of Payne-Gaposchkin, Brenton,
and Gaposchkin# RV Tauri stars are supergiants
with (1) comparatively stable periodicity of light
variation, whose amplitude may reach 3 magni-
tudes, (2) alternating shallow and deep minima,
which occasionally interchange, (3) double-period
of 30-150 days, and (4) F w K spectral class,
which is earliest near maximum light. From the
GCV 8 list we disregard those variables designated
RV? and include only stars with periods in the
range 39-110 days, since this is roughly the range
of RV Tauri stars in globular clusters. Although
some types of red variables in the same period
range have light curves resembling those of RV
Tauri stars, we assume that those variables with-
out known spectra are yellow. In some cases
photographic magnitudes were obtained from other
sources.*$ Since the magnitude of CN Centauri
is uncertain at minimum, it has been omitted
from the distance determinations. Preston,
Krzeminski, Smak, and Williams have shown that
UU Herculis and V453 Ophiuchi are RV Tauri

*Published in the Publications of the Astronomscal Society of the
Pacific. 76 (449): 98-105, April 1964.
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stars.? Apart from these two variables, their list
of RV Tauri stars does not otherwise conflict with
assignments given by the GCVS, in the period
range 39-110 days. We have used their magni-
tudes and period for V 453 Cphiuchi. The total
number of variables whose distances we may
determine is 45, of which 25 have known spectra.

Preston et al.? have defined three groups of RV
Tauri stars on spectroscopic criteria: A.—All spec-
tral features indicate type G or K, except that TiO
bands may occur during deep light minima.
The type based on the Ca n lines differs from that
based on the hydrogen lines; strong CN bands
occur at and around light minima. C.—The spec-
trum resembles that group B, except that CN
bands never appear. Moreover, the stars in
group A are redder than those in groups B and C
(which cannot be distinguished photometrically).
The RV Tauri ste=s may be distinguished from
the yellow semiregulars on the basis of U,B,V
colors and strength of hydrogen emission. At the
end of this paper we shall comment on these
subdivisions.

The distribution of RV Tauri stars in longitude
is far from scraggly, contrary to the results indi-
cated by the smaller numer of stars used in earlier
investigations.” Indeed, Figure 1 shows a strong
concentration of stars in the direction of the
galactic center. Their spatial concentration de-
pends on a knowledge of distances, which we
may obtain from globular clusters.

In general, RV Tauri stars in globular clusters
are specified by tl » same criteria as those in the
field. Small deviavions from these criteria have
been discussed by Rosine® and Joy.* Other dif-
ferences will be pointed out below. Using the
mean photographic magnitudes of the nine certain
RV Tauri stars in clusters (from the writer’s
previous paper,'® hereafter called Paper I), we

B—
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may obtain a period-luminosity relation, if the
distance moduli of the clusters are known. We
take the moduli from Hogg’s list,!* where she
assumed that M,,=0.0 for the RR Lyrae stars.
For M 2, M 5, and M 13, we have used the values
of M, of the RR Lyrae stars corrected for redden-
ing listed by Arp' and have added C.I.=+-0.1.
For M 22, which closely resembles M 13,314 and
for w Centauri, which has a main sequence turnoff
at the same magnitude as M 3% (also iisted by
Arp), we assume analogous values of M,,. For
M 56 and NGC 6712 we adopt the mean of all the
known values, M,,=+0.3. Applying these cor-
rections to Hogg’s distance moduli, we obtain
absolute magnitudes of the cluster RV Tauri stars.
The period-lumincsity relation is then <M,,> =
—4.0+0.026P +0.36, where P is in days, in rea-
sonable agreement with previous determinations
which depended on indirect or statistical methods.
5,8,7,17,18,19,20,21

To calculate the distance of the RV Tauri stars
in the field, we use

<M’g> = <m"> —10"’5 log r—a

where r is in kpc and a=0.7r if [b!| <20° or
0.25 csc |b™| if [b11| >20°. The first formula for
extinction is used by Payne-Gaposchkin!® and
also happens to be the mean of extinctions derived
for five RV Tauri stars by Kameny.”

Figure 2 shows the RV Tauri stars projected
on the galactic plane. Variables with known
spectra are indicated by open circles, those with
unknown spectra by filled circles; the crosses
denote the positions of the sun and the galactic

Figure 2.—Field RV Tauri stars with known spectra
(open circles) and unknown spectra (filled circles) are
projected on the galactic plane. The positions of the
sun and galactic center are denoted by + signs. The
circle around the sun has a radius of 1 kpe.

center. It is difficult to corroborate the previ-
ously suspected’ groupings r.ear Ophiuchus (30°),
Aquila (40°), and Gemini (180°), on the meager
data available and the uncertain extinction.
Other clumpings at 60° and 75° are also suspect,
although the Sagittarius group (0°) is probably
real. There is no apparent correlation of period
with position in the Galaxy.

Figure 3 shows a vertical cross-section of the
Galaxy, where the sun is assumed to lie at 10 kpe
from the galactic center. As indicated also by
Figures 1 and 2, the number of variables increases
in the direction of the galactic center. Their
apparen’ absence at low galactic heights is due to
interstellar extinction. The distribution strongly
resembles that of the long-period variables with
P <250 days, that is, intermediate between the
distribution of long-period variables with P> 250
days (Population I) and the distribution of the
halo RR Lyrae stars (Population II).!* The
vertical density gradient y, where log N=z—~y
(r sin b) and N is the relative number of stars,
is 1.1, and the median height r sin b is 0.45 kpe.
Both these quantities are similar to those for the
long-period variables with P« 250 days.

Perepelkina suspected that the RV Tauri stars
form an intermediate subsystem.'’” Their rela-
tively low radial velocities and latitudes indicate
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a weak Population I, but their excessive blueness
(like the W Virginis stars) and discontinuous
velocity curves indicate Population II.7 The
yellow semiregulars, however, seem to be real
Population II objects.

The general similarity of the RV Tauri stars in
globular clusters to those in the field and the
approximately equal ratios of number of RV
Tauri stars to number of RR Lyrae stars? indi-
cate that field and cluster RV Tauri stars belong
to the same family. At maximum light the RV
Tauri stars are usually the brightest cluster mem-
bers and are found close to the cluster center
(compared with the long-period variables).!
'Therefore, because of the long relaxation times of
globular clusters, it seenis unlikely that the RV
Tauri stars in the field have cvaporated from
clusters, even apart from the observation that
they do not form a halo population.

Besides their spatial distribution, some other
differences between the field and cluster variables
should be mentioned. While Rosinc found no
period-gpectrum relation for the variables in the
field,* Paper I showed such a relation for the
cluster variables, aithough the stars seem to be
separated chiefly into a 60- and a 90-day group.
Kameny? found that the short-period RV Tauri
stars in the clusters were slightly bluer thau those
in the field. No very long-period RV Tauri stars

have yet been identified in globular clusters.
Moreover, in the clusters there is a marked ab-
sence of RV Tauri stari stars in the period range
68-87 days. We note in Table [ an actual anti-
correlation of period frequency with the corre- .
sponding field vaiiables. Lastly, we meniion that

TABLE 1.—Period Frequencies of the RV Tauri Stars

P Globular Clusters Field
(days) o
RV | All Variables | RV (with Sp.) | RV (all)
28-47._..| O 1 3 5
48-67._..| & 7 6 15
68-87..._.| O 2 15 23
88-107___| 4 13 3 5
>107..._| O 16 5 24

no RV Tauri stars in globular clusters have light
amplitudes exceeding 2 magnitudes, whereas
about one-third of the field stars in the same
period range have greater amplitudes. All these
differences may be due to different ages and
chemical compositions.

The results of work by Preston et al.? indica*e
that, at least spectroscopically, the RV Tauri
stars do not comprise a homogeneous class. Their
group A of these stars shows TiO at minimum and
resembles kinematically an intermediate (disk)
population.® Group B is probably also related
kinematically to the disk, and we note that it,
too, shows the presence of metals in the strong
CN bands. The radial velocities of group C stars
are very high and suggest a halo, population; the
absence of CN is also suggestive. We note that
the two variables from globular clusters that
Preston et al. studied probably belong to the
“halo” group C; it is interesting that, whereas
groups A and B show a wide range in period, the
three field variables from group C have periods
lying in the “forbidden’” range of the clusters.

If the RV Tauri stars plotted on the vertical
cross-section of the Galaxy (Fig. 3) are distin-
guished according to groups, then it appears that
groups B and C adhere very well to the above
galactic assignments, whereas group A populates
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both the disk and the halo. However, it is clear
that RV Tauri stars do not really range far enough
to separate groups into halo and disk populations.
Therefore the suggestion by Preston et al. that
groups B and C belong to a larger family raises
the further speculation that all the groups form
really one family. At least this has been indicated
by previous work.

In this connection, we note that there is no
apparent relation between spectroscopic criteria
and shape of light curve or period. Moreover,
the colors appear to form a continuous sequence,
despite the spectroscopic differences, Although
Preston ¢! al. could not obtain reliable luminosity
classes at the dispersion they used, Rosino’s data’
suggest that the luminosity class falls with in-
creasing period, in agreement with the results on
variables in globular clusters.'® Comparison of
the general period-luminosity relations for the
variables in globular clusters and those in the
field suggests that any difference in the luminosity
between the cluster and field RV Tauri stars does
not exceed 1 mag. (Paper I, Fig. 11). We believe
that the statistical identification of luminosities
in the clusters and in the field is sufficient to
outline the general spatial distribution of RV
Tauri stars, as co:idered in this paper.

In conclusivon, tha RV Tauri stars scems to
form an intermediate subsystem between Popu-
lation I and II. Except for the underabundance
of metals and the period-frenjuency anomaly, the
RV Tauri stars in globular clusters resemble their
counterparts in the field. Perhaps long-period
variables in clusters with late integrated spectra
should be investigated for RV Tari behavior; in

this connection we note the 103-day variable in
NGC 6712 (GA). Certainly the known semiregular
and irregular variables with undetermined periods
should be checked for periods in the range 68-87
days.
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LONG-PERIOD CONTRIBUTIONS TO THE DISTURB-
ING FUNCTIONS OF THE EARTH FROM THE
SEVENTH, NINTH, AND ELEVENTH ZONAL HAR-

MONICS®

T. L. FELSENTREGER AND W. J. WICKLESS

INTRODUCTION

It is the purpose of this paper to present explicit
formulas for the long-period terms due to the
seventh, ninth, and eleventli zonal harmenics in
the disturbing function of the earth in the case of
an artificial earth satellite. The formulas are
given for terms of the satellite’s orbital elements
and the Delaunay variables. G. Giacaglia (1)
has given general expressions for the long-period
terms due to any of the zonal harmonics, which
can be expressed in terms of the orbital elements.
The apparent differences between the results of

where
p=GM
G =gravitational constant
M =mass of the earth
R =radius of the earth
J« = zonal harmonic coefficients (n+42, 3,...)
P, = Legendre polynomials (n=2, 3,...)

¢ = geocentric latitude.

this paper and those in Giacaglia’s have been veri-
fied s due to the errors in the lavter as it appears
in the A.J.

" The contributions of the long-period terms to
the mean motion of the argument of perigee are
also given.

THE DISTURBING FUNCTION

The ea1th’s gravitational potential at a distance
r from the center of the earth is

U='_;[1 -3 (£) 2P gin ¢)],

Here, the earth’s radius is adopted as the unit of length. The seventh, ninth, and eleventh Legendre

polynomials are

P: (sin ¢) =-116—<429 sin’¢ —693 sin’¢-+315 sin’e —35 sin ¢)

1

Py, (8in ¢) = 128(12155 sin®¢ —25740 sin’¢+ 18018 sin*¢ —4620 sin®¢+315 sin-¢)

Py (sin ¢) -5%—6(881 79 sin''¢ —230945 sin®¢-218790 sin’¢ —90090 sin*¢+ 15015 sin’¢ —693 sin ¢).

*Pyublished s Goddard Space Flight Center Document X-547-64-233, August 1964.
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Let
a=semi-major axis of satellite’s orbit
e =eccentricity of orbit
i=inclinatior of crbital plane to equatorial plane
{=mean anomaly
f=true anomaly
g=argument of perigee.

The Delaunay variables L, G, and H are

L=+/ua
G=Lv1—¢
H=G cos 1.
Use is also made of the relations

sin ¢ =sir ¢ sin (f+4q)

L2
g=6’(l+e cos f).

The long-period terms in the expansion of U as a Fourier series in £ and g are given by

2%

1

7 Udt, (sec reference 2)
0

making use of the relation

L r?
d=ﬁ—zdf.

a

Denoting the long-period parts of Uz, Us, and Ui1 by A:F3,,A¢F,,, and A1iFy,, respectively, we have
21%J7¢ sin ¢ H? H* He /. G GY .

H? H* H¢ G, G\ .
“15(3 —69'@'{'209'6" —143ﬁ) (ll —1417-*-31—4)8111 3g

H? H* H¢ G GY
+33(1 —'l5ﬁ+27a —1366') (1 “2F+E)Sln 59]

" .
AgFyy = 3u'lJye sin i H

—_— 210{ 7 —30 * ! 004_}[0 1
524288_1:3_(;"-7[ - 8?;‘;'*'20025 —4 G8+2431-G-§)X

-~ G, o G GO\ H o HY . HS _ He
x(7.., ~100175+3857 —3sﬁ)snn g —10780(1 ~405+ 24 —416-(—;;+221ﬁ)><
—65% 1090 3G\ —32M 1 146H _ogoH g5
x(39 6573 +297 3L°)sm 3g+l2012(1 32t 146 2005;+85@)x
5 -1 7% Nein 50 - oo st _soHC L (L H
X(o 15+ L,)smsg 2145(1 205+ 54 ~52G+ 17 ) X

2 4 6
X(l —3%-!'-3% -%)sin 79]
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1113 e si s He H
AFa,= —6—7»11“088"&———%2—;;[126(21 13651 +1365054 46410——+293930 ~23933— Gm)x

x( 41423 —772027; +45738G 8652 463" )si
L' AR

G* G* G

iy Ly —969 GIO)X(323 —680—;-}-462 112L6+7L8)5m 3g

—163800(1 61 +o70 —1802 +2261 G

+7020( —265—; G 1+2130§~ —5746+; +6137% —2201% (323 —816‘+678€— —200%-1 152; )sm 5¢
2 4 6
—49725( —41 +250H —514 +431H —133}(f,w>x(19 +60%+66% —28% 32:;)3“‘ 7g

[ 8 10 2 4
+20995( —2553-{-9051— 130—-}-85& 2lléw>X(1 —4%4—6% + )sm 9g]

CONTRIBUTIONS TO dg/dt

Since th: Delaunay set of variables is canonical with respect to the Hamiltonian F, which includes
A7F2,, Ang,, and Aqup, we have

dg_ _ oF

5= 3G (see reference 2).

Therefore, a computation of d(A.Fs,)/d9(1=7,9,11) provides the long-period terms in dg/dt due to the
seventh, ninth, and eleventh zonal harmonics.
The results are

&Fy) 2w T H* . HS G, .G
o0~ oL sy 0] (int {8 135G +495 7 4297 ) (33 —3055+57;

~+e? sin? (65 —2025 +8415 -8151 )(33 30——+5 )

2 P
+20e? sin® (5 —135 +495£I— —429— )G (3 i) ]sin g

G¢JL? L?
2
—15[ (sin? ¢ —e?){ 3 —69%+?09H 143go) (ll 14 +3 )-’;—e2 sin? (39 —1035—+355‘3’GI:
H H* HA\G(,, 'G*\|.
—-2717; (w) (11 —14— L2+3 )+4e"’ sin? ( —69— +209—— —143~; G“) L’(7 -3 12 )]sm 3g
iy H2 HY I G G . H? H*
+33 [ (sin? 1 -—e*)( -—15—+27 7 13— G°) (1 —22—2+E)+e'-' sin? (13 225—0—2+4 9&—-
[} 4 [} 2 2
244?,6) (1 2 + )+4e2 sin? ( -15-—-!-270‘ —13” )Z,( g, ]sin }
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3G~ 52428BLC e wn 7|2 0 | (8 ¢ 7 3087 +2002 1004+ 2431

G G

2
x(715 —1001%+385G —:s5g,)+e2 sin? (119 —5852g2+42042g4 92002 +6O77og8) (715

2 4 6
—IOOIG +385g —35+— )+1462 sin? <7 —308%-%2002% —4004%1;

2
+243lg£)gz(143 110 +15G )]sin g

[}
-10780[ (sin’i—ez)(l 40%—;1-23421‘ 416 +221H (39 —659—-—%-29 ge)

+ét sin? (17 00+ 491475, — 0568 0rst 55250 )(39 650 +207 3 g:)

: H H\G? G :
+2¢ sin? <1 4o——+234 — 4167 G6+421 )L (65 - 587;+97 )]sm 3g

2
+12012[ (sin? ¢ —e‘*‘)(l —322’—24— 146}1- 200—+85 G“) (5 11 +7G (L;° +¢? sin? <l7 —6082,L2

2
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8
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G*? Gt
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H* H?® H G
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NOTES ON VON ZEIPEL’S METHOD*

GIORGIO E. O. GIACAGLIA

1. INTRODUCTION

Since the rediscovery of von Zeipel’s method by
D. Brouwer (1959) and its successful application
to the problem of artificial satellites, many other
problems have been solved by that same method,
s proving its great applicability. It is the pur-
pose of these notes to present the general equa-
tions of von Zeipel’s method and discuss briefly
their applicability.

The reduction of the order of a differential
canonical system can, in theory, be performed by
obtaining, one way or another, integrals of the
system. One of them is the Hamiltonian itself
when it is time independent. Actually, this in-
tegral of the system (physically its “energy’’), can
describe completely the geometry of the solutions
in a phase space of 2n dimensions where 2n is the
order of the system. When this order is 2, then
the solution is completely specified and the use of
the Hamiltonian reduces it to a first order differ-
ential cquation which can be integrated by quad-
rature.
tem of n degrees of freedom (2n* order), reduces

The introduction of p integrals in a sys- -

it to one of n— p degrees of freedom which can be

integrated immediately when n—p<1 (where,
of course, p cannot be greater than n).

A few comments can be made with respeci to
the more famous methods of reduction to show
their eventual connection with von Zeipel's
method.

2. FROM HAMILTON TO VON ZEIPEL

In the discussion that follows only methods
that have been used in connection with differen-
tial systems describing the motion of a physical
system are considered. The presentation does
not necessarily follow a chronological order.

*Published aa Goddard Space Flight Center Document X-547-64-161,
June 1964.
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Consider then a system of n degrees of freedom
given by 2n first order canonical equation

ay;
(j=1) 2: Y n)

) = o
Y= axj

j:j=

(1

where the Hamiltonian H=H(z1,...,ZnY2,..-Yn)
is presumed to be time independent. If this is
not the case, the introduction of time as a new
canonical coordinate z,,1 (the associated momen-
tum being — H) always reduces the latter to the
former case. The degree of freedom will however
increase by one.

A canonical transformation of ihe variables
(z,y) to new variables (z’,y') will be, in this ex-
position, equivalent to the problem of finding a
generating function S=S8(z’,y,t) such that

, 0S8

I—axlj
(j:]_’ 2, RN n)

aS

_ay,'

@)

z;

It is easily seen that this is a sufficient condition
to satisfy the Jacobi-Poincare relation
zl(xj dy,—2';dy' ) =dW. 3)
j—
which is valid whether or not S is an explicit func-
tion of time. The Hamiltonian of the new sys-
tem will be equal to that of the old one inasmuch
as one is obtained from the other by introducing
the transformation of variables expressed by
Equations (2) when a8/at=0.
a. {AMILTON-JACOBI—The method intro-
duced by Hamilton and Jacobi consists in obtain-
ing a canonical transformation such that the new
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Hamiltonian is identically zero. In such a case,
the new variables are all constants.

b. LINDSTEDT'S METHOD—Lindstedt’s
method is a particular application of the Hamil-
ton-Jacobi method for cases where the Hamilto-
nian is expanded in terms of small parameters.
In this particular case the solution gives the coor-
dinates as linear functions of time and the mo-
menta as constants (usually called action angle
variables). The comparison with the Hamilton-
Jacobi method is purely formal since the method
devised by Lindstedt is quite original. Actually,
the real difference between von Zeipel’s and this
method is that Lindstedt does not make nee cf 5
generating function.

c. WHITTAKER'S METHOD (solution by
series). This method obtains » integrals of the
system by reducing the Hamiltonian to a function
of the products p;=z,(j=1,2,...,n). In this
case, since

_0H oH

=—0
dy; op;’

it follows that
Z4;+xy,=0 or py=const (j+1,2,...,n).

d. DELAUNAY’S METHOD—This method,
as Lindstedt’s, can be applied only when the
Hamiltonian consists of a “zero order” part (the
corresponding system having a known solution)
and a ““disturbing function’’ that has a small nu-
merical factor., The basic approach of the von
Zeipel’s method is the same as that of Delaunay’s
method; however, the latter one makes no use of a
generating function and breaks the disturbing
function into parts which are treated separately.
The Hamiltonian must be constructed after the
transformation is performed for each particular
part.

A few more techniques could be mentioned but
one deserves more attention than all the others.
The concept of adiabatic invariants in Quantum
Mechanics is quite analogous to the concept of
“mean variables” in von Zeipel’s method, or to a
certain extent to what Whittaker calls Adelphic
Integrals.

3. THE VON ZEIPEL'S METHOD (1916)

It has been quite common, after Delaunay, to
use the negative of the Hamiltonian. Thus, if

=—Hand if £;(j=1,2,...,n) and L,(j=1,2,...,n)
are the coordinates and momenta respectively,
then

. oF
(j=1y 27 Yy n) (4)
oF
Lj—‘aTj.
Suppose
F=F{L; ¢ (5)

where ¢ is a “small parameter” and £ and L indi-
cate the sets ({i,...,fn) and (L,,...L,). A
canonical transformation involving the parameter
e will be given by a generating function

S=8((,L*; ¢
such that

aL* (6)

where (£*,L*) are the new coordinates and mo-
menta. If F* is the negative of the new Hamil-
tonian, then we assume

F*(e*L*; ) =F({(¢*,L*; €),L(¢*L*; €); ) (7)

or, from Equations (6),

s S
F*(EI—J;, L*, E)-F(‘, —a‘I:, 6). (8)

In a more restrictive sense it is assumed that the
series

_ N
F=ZeF, (L L) 9)

F 2]

represents the negative of the Hamiltonian to the
required degree of precision and converges to
F(¢,L;e) as N— o, From this point F is written
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as F without danger of confusion. Furthermore, are convergent for sufficiently small e.
it is assumed that By the conservation property
S(¢, L*;€) < i S\ _ & gk_lf_‘j
T Sl 6 57 )= ZraE ) (11)
Fk(C, L) k=0 k=0
F*e* L*: o where it is important to note that 3S/4¢ contains
y y

¢ through Equation~ (6). Equating the coeffi-
are developable in Taylor’s series in the neighbor-  cients of like powers in ¢ in both sides of Equation

hood of =0, so that the series (11) gives a system of partial differential equa-
tions in S and F*. The next step is obtaining
S= ZetSi(l, L*)emo this system.
b=t 4. I “FERENTIAL EQUATIONS OF THE VON
J @ k ZEIPEL'S METHOD
(0 %)-35(%), - .
9t/ S kI det The m*™ derivative of F, with respect to e at the

poirt e=0 is obtained as follows.

dF’k EaF,c dL; _ QdF,
6L¢ dé p laL‘ dé 6[,
Using Equation (10) it follov. ; that

dF, oF, aS,(¢, L*) N T NN
( ) zaL, de[Z’ 7 2P ks (agj)ho (12)

i=1 4=l
_d_m._—__ll(e - 1‘_’&)
d 3 aLg

a8
Fk = F‘({, é‘z‘).
Applying Leibniz’ formula, this becomes

dm1f L oFN\ _"NOQ TV pm~1ydrett a1 (9F,
d\¢ oL, 2 ( v ) de den\GL,)

yaa()

Consider

Let us now compute

where

For =0 the only possible choice is j<m. Then

dﬂl—l j— 6Fk = aFk

{dwﬂ(‘ lEE)} )( ‘d m~\aL )’
e=(
Now using Equation (12)
Ko 1) [oF 95,

(%) =2 S0ohe-oli=) (o)

em0 =0

It is now desirable to rewrite the above equation as

n EER |
(55) =3 Sagum) |z o] "

=0 gyl jymi
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dn/, 9'F,
dim j 0L,1 :
cm(
The result is

dm-1, (ale (m_]l_l)v/asfz v dm1, —12/ oF,
dém— aL‘ . 2 2’ (m—]1 —]2) '\ 6(12 . dém_j 1-"2\8Lgl ’Jng .

fgml jowsl

Equation (13) is now applied to find

The process is repeated up to the point where

m—ji—jo—-++—jn=0, (14)

A A T 4 3'F, _ 0°F,
dém-jl_jz- v '_"N\aLtlaL{z' . ’aL‘ 6L¢x- M -6L¢
¥ Jemd N7 emd
Substituting these successive derivatives into Equation (13), it follows that

a"F, (m—1)!(38i (m—ji—1)! {88,
( ) 2 27 (m—Jl)'< al«,)c-o ‘2 EJ (Mle—jz)'\ac&>¢_o

1— 7 l-

so that

(m—ji—ja—1)! '/aSn> (m—jr—ja— _]N—l— nY aSm)
Xz 2:J"(m—.h".h—.?a)'\ oty e-ox Xz EJN (m—ji—fa—+++—jm)! \ 0y /e

t,=1 4 =1

(ot
aL‘IaL¢2'°'aL1N .-o'

The numerical factors are reduced to
m!

JU’ JNm(m_Jl)(m_Jl_Jz)'..(m—Jll—Jz—"'_JN_I) m (m,Jl’J2, )JN)

and the second summation does not run in general up to infinity but to a limit given by condition (14).
Thus the above relation becomes

(d F.)M z 1 <'2>m' Clm;gr, <+, Jy) l] (?c’,:)._., aL,,?Iff’;Ltu);-o (15

(m) pei =1

where 2 stands for summation over all possible positive integers j, whose sum is m (according to Equa-
tion (14) J, and the first product II refers to the summation signs 2 There are n of these integers.

pw=1 ' [ |
Equation (15) will be valid even for m =0 with the definitions
d°F,
e =
and

C(0;—)m1,
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From Equations (10) and (11) it fcllows that

P3ene D=3 3 S(40) -3 SEUGR) -3 ST

k=0 k=0 m=0 k=0 im0 yu() Mmem0

The substitution of these results into Equation (14) leads to

o ¥ N n . SJ, NF,_,,,
=333 (z ) COni -+, (aat,).-o(aLi' feam) o (16)

yau0 mel (m) p=1 \Sp=l

In a complete similar way, if

re=Fen (1),

then

o v P a8, ( NF_
= C 1y *°*% *’ * M* €, )
'2_;0 ,..2 11 (2) (m; j inll (aL,’ )._0 R ..ae,N),_o a

m) p=l \tpml

It is important to note that in Equation (16), e=0 is equivalent to L,=4a8,/9¢(,(r=1,2,:++,n), and in
Equation (17) ¢=0 is equivalent to (¥ =0S,/dL%(r=1,2,+-,n), according to Equation (10). The
equality of factors of the same power of ¢ in Equations (16) and (17) gives the partial differential equa-
tions for the von Zeipel’s method

v N " . . N 3Sj,( oNF,_,. Saj, ANF,_n
PN || <2>C(m.]n, e, jn) ,!:ll{"", aL,’---aL,N>+"aL:’ (ae:; ---at*.,,)}‘_fo (18

mm0 (m) puel \Speal

for v=0,1,2, -,
For instance, Equation (1¢) gives:

v=0
as, as, ,
Fo(t a;) F* (aL‘;,L*) (19)
v=1
3Sr) | [ 98: oF, S ., aS, aF; |
F ‘(" ac)*‘%(ac, aL,)L 38y~ (OL*’L )+2(6L," o)y 388 (20
= EFTA oL}
v-2 )
as, aF, a8, oF, 38, 98, 9,
'( )*‘Z(aa aL) +2(ae. aL) a 22(W;EGL,6L,)L a5,
b=t LA TA
&
8So % ( 38, oF; 9S; oF; a8, 38, a'F3
(L"L )"‘%(av at‘) +2(6L‘,‘ ae:)‘, as., 22( Ly oL; 363003 ,,_ 08, *)
t 6 =l &

L? GL
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v=3
S a8, oF; % (8S: oF 38, 88, 8%F,
( )+2<ac, aL) aSo+2<6€, aL) as.,+ 2 (az, 3, aLAL,), 98 .
a, = o= Ie=5¢.
% 158, a8, a8, &*F, % (38, 38, 9F, [ 88; 9F,
+ 2 6( at, at, al, aL,aL,aL,) _ S+ 2 év 8, dLIAL )L aSo+2<a—(, aTL,) S,
1, 1, k=l ’—3[: 1, j=1 EE =t Lt=:9_(:
S0 ., 38, oF; = 88, 9F 38, 38 9T
( v L >+2(6L,* at¥ 4,_0,_&,+2 9L} 3CE )y 8% T 2 2\3L; 3L} 367667 ),,_ 0%
‘—aL,: fm=1 61* 1, j=1 - x 6[4:

4oy 198 98 a8 &Fs 38,38, o;Fs
2, §\ar? aL¢ oL? ST .. 25, +3 3LY L} 337 ) ,,_ 05,

4.1.&-1 = 1, =i *=3L,
%[ 98 aF;‘)
+E(a—l,? at¥) . 35 (22)
= b=3Ls

where use has been made of the coefficients

c(1; 1)=1
C(2;2)=1 C(2;1, 1)=%
C@;3=1 CB3;2, D=% C(3;1,2=¢ CG3; 1,1, =4

5. ELIMINATION OF VARIABLES

Since the soluilon of the system is known where F is reduced to F, the problem is to eliminate
variables which are not present in Fo. Suppose a canonical transformation is found in such a way that
p of the n coordinates (p<n) have been eliminated from the Hamiltonian, that is

F*=F*( -+, 0L, LE, -+ L3). (23)
The equations of motion then yield
L} =C,(const.) (k=1,2,++,p). (24)
If these constants are replaced in F*, then
F*=F*(f4+1,++,02,C1,Ca ¢+ +,Cp, L2 41, o+, L)

and the problem is reduced to one of n—p degrees of freedom.
a. If p=n, the problem is completely solved, since

Ll‘-cl (k-1,2,"’,ﬂ)

and
‘.‘ -w.(C,,- . -,C‘)l+[:(0). (k- 1’2,. . .,n)
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b. If p=n—1, the problem is integrable by quadrature. In fact,
Lt=C: (k=12,:--n-1}

2= S =A(Cy Cs -+, Cucsi L, 1)
]
l:= gﬁ, (Cl, Cz, e (',._.1, L, ’ (: .
Since
F*(Cy,+++,Co=r; £3,LY)=C =const.,
then

=L3(C,Cyye++,Cpm; &)

and therefore
l: =X1l(C;Cb' * '7Cn‘1; ‘:)

‘4
—tm [ " dg
(:m). Aal, (71, cvey Cam; §)

The coordinate £f becomes a known function of time as well as LY.

and

Therefore, the equations

P i

3L M((‘,, Cy, +++, Cuer; LAY, c:(t))(k=1, %, e, n—1)

can be integrated by quadratu..

The von Zeipel’s method oomxsts in the elimination of some of the -:ordinates (angular variables)
and the reduction of the probleia to case (b) and possibly (a). T.iv ,ma.ptablhty of this method is
based on a set of hypotheses which are listed below in Roman numor!

(I) The new and old corresponding variables differ by a qux=iits at least of the first order, i.e.

L= =0(e)
(i=1, 2)""”)
L“—ng()(t).

This automatically fixes S, to correspond to the identity transformation since for ¢=0, the above
conditions give

{m
(i- 1, 2""on)
L:-Lg.

Therefore

So-E;l. Ly (25)
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If expression (25) is substituted into Equations (19), (20), (21) and (22), then

Fo(¢, L*)=F3(¢, L*) (26)
v=1
. aS, OFs _ ruir 1x 95 oFy
Fi L )+(_2, a(, aL* =k L )+,.E, aL* =, A 27)
yv=2
a8, oF, OF dusy 08, BF0 s e
Fat, L V’E(ae,) 1Lt +Z(ac,) Lt 2 2 (ae, ac,) .aL:aL;"F 26 L%
[ 38, aF, ERA aFo a8, a8, 8 Fy
+ (-—-) as ( 2) ( ,~) o (28)
Z; OLT/ it _ ¢ 2 LY/ pr ¢, A 2 2 OLY 8L}/ pr _ 3% 31,

and similarly for Equation (22).

It is seen that S,(L*, ¢) and F}(L*, ¢) are unknown functions. In order to perform a particular
solution toward the elimination of certain angular variables in F* we impose conditions (which are usu-
ally suitable in Celestial Mechanics) on the functions S, and #;. They are

II) F#(L*, ¢) does not depend on ¢(i=1, 2,.++ p<n) for any k>0,

III) S.(L*, ¢) only depends on the ¢(i=1,2,-+.,n) through trigonometric functions, for -ny k>0.

This avoids ‘“‘secular perturbations” in the momenta L;, or in other words differences

a(S—Sy)

-] =
=L al,

are periodic functions of the {(k=1, 2, ++ n).
The application of these conditions, together with the obvious fact that F, does not depend on angular
varables {,(1=1,2,.++,p<n) which are to be eliminated, yields the relations

Fo(lyrsye o ey by LY oo, LY)=F§(lysryo+ oLy LT +++,L}) (29
F =F1‘
oS, GFo Sh 6Fn
Fl'+2( 0(4) t aLg (BL" l‘ ( at‘ (30)
Fu'l'-Pu“F: +Pn
S, aF, 85, aFs
Fy+P ='+2( ac,) =1L Pt 2 ( )t,= 0ot @

and so forth. The functions F,, and F,,, Fy, and F,,, P,, and P,,, P3 and Pj, are the portions of
F,, Fy, P;and P;* which are respectively independent of and dependent on the £,(1=1,2,+++,p),and where

GS. 0F| aS; aS, %%,
P E( ol L, L.aL* 2 2 (at, ae,) _ ,:aL:aL;
1y Jwl ° 4

hd 681 aFl aS; BS\ G’Fo
Pr= 3 (a—z.?)[. a:*'*‘ 2 (az,' aL'){. (309 32)
fumpl =

e B BRI E ST e e
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In the usual problems of Celestial Mechanics F, does not depend on any angular variable so that the
Equations (30), (31), (32) and the corresponding equations for higher order are much simplified. Thus,
the additional hypotheses will be considered.

IV) F, and thus F§ depend only on the momenta L}

V) The angular variaoles ¢ (i=1,2,---,m) corresponding to momenta L,(t=1,2,-..,m) that are
present in F, have been eliminated to the £ order.

The next problem is the possibility of elimination of angular variables whose ~onjugate momenta
are not present in Fo. At this stage the Hamiltonian of the system is

F*:F:(L’l‘,...,L:).}_Fr‘((w‘,h..., {’" L’l",..., L:‘)-{--..+F:({m+l’...,(m...,L:) (33)
where

LY¥=C,=const(j=1, 2,-++,m),

and the old and new variables are related by

an 382 oSk
Ilj’ L’ acl+acj+...+ 3‘;
(J=l: 2) %y n) (34)
8Sl 8S2 aSK
¥_ = ce s —_—
G-t=arstarst torx

Assume a new canonical transformation from the variables (&+1,+«-, 0, LE+q1,+-+,L¥) to the
variables (£5%,, e« <, 8%, L%*,,+«+,L¥*) and let

8* =%ty - 3, Laky, s+ o L3%) (35)

be its generating function. Then, since L} =C,=const (j=1, 2,-++, m),

FE(LY* e o« LX*)=F*(LY*, -+« ,LX*)=const L}*=L}=C,=const (k=1, 2, +-,m) (36)
FT([:.+ 1,*° 'v{:; Cl)Ch' b 1Cm'L:lil)' * ',L:*) =FT*(‘:+I;' * ';‘:; L:-T—ly---yL:*)- (37)

The last equation iraplies that the elunination of further variables is possible if and only if F¥ does not
depend on them. For in this case

Fr(e;'*ﬂ*'h' * 'ye:yCl)Ch' ¢ ':Cm :&:17' * ')L:*) =Ft*({:l+1-‘1‘1!' * '71':; L:i*'*'l!' * ')L:*)

and
F*(* (% L** L** . OS}' aFl*
Ty s O LA, e LI+ Y 30k 3L
f=m<-1
n aS* aF**
=F* g+ 0 G5 Ly ooy LIN+ 2 i;:_*_ _37}_ (3)

{=m+p+1

which defines St. It is important to note that in such a case S will be defined by an equation involv-
ing 2nd order terms; these terms are therefore necessary to obtain first order “perturbations.” This fact
is exactly what happens in Brouwer’s theory on artificial satellites (1959), where

a) The elimination of g* is possible because F} is independent of this variable.

b) The davelopment for long period perturbations (those of argument g*) needs the evaluation
of 2nd order terms.
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This type of reasoning can be carried on up to any order in exactly the same way. It may then
happen that the elimination of a certain angular variable by obtaining S} requires the evaluation of
terms of the kth order.

However if F} depends on the angular variables to be eliminated the problem cannot be solved
unless it happens that the remaining system has one degree of freedom. For example, this is the case
of the perturbations on the motion of an artificial satellite by the moon.

6. SMALL DIVISORS

The case of critical inclination for the theory of artificial satellites of an oblate planet for which P,
is the dominant zonal harmonic and J# —J?, is 2 well known example of the problem of small divisors.
Here, only a particular aspect of the question is dealt with. Consider the solution of Equation (30)
in the usual case where F§ does not depend on the ¢;. The characteristic associated system is

b _db_ _dty_dS
oF, "ok, ok, Ty, 39
aL* oL¥ aL*

Should one of the partials 3F,/dL¥ happen to be zero, the general solution would certainly be discon-
tinuous since a ‘“‘small divisor”’ is present. However this divisor is not exactly zero because the quan-
tity oF,/0L¥ is evaluated to first order only.

In the case of critical inclination it is necessary to take

S=8,+€"2812+€S1+e/2Sp+ < - -

However, in doing so the separation of “long periodic” and “secular” perturbations is lost. The in-
tegratica leads, in most cases, to elliptic integrals (Hori, 1960).

T'he question of small divisors usually arises whenever the problem presents cases of libration as
particular solutions.

Another case to be mentioned is the resonance for an artificial satellite whose period is commensur-
able with the period of rotation of the Earth when tesseral harmonics are included. Again, expansion
in powers of €!/2 can be used to solve the problem (Morando, 1962).

Finally it is important to note that singularities in the Equations (39) reflect singular points in the
hypersurface definped by the Hamiltonian of the system in a phase-space of 2(n—p) dimensions if p
variables have already been eliminated.

7. SUMMARY

The general differential equations of the von Zeipel’s method have been given to any order. It is
hoped that this will avoid tedious Taylor expansions if one needs to go to order higher than the second.

At the same time, the brief discussion on th: applicability and a few pathologicat cases of the
method, may give some guidance toward the solution of new problems.
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